Unlikely intersections between isogeny orbits and curves
نویسندگان
چکیده
Fix an abelian variety $A_0$ and a non-isotrivial scheme over smooth irreducible curve, both defined the algebraic numbers. Consider union of all images translates fixed finite-rank subgroup $A_0$, also numbers, by subvarieties codimension at least $k$ under isogenies between some fiber scheme. We characterize curves inside which are dominate base curve potentially intersect this set in infinitely many points. Our proof follows Pila-Zannier strategy.
منابع مشابه
Preperiodic Points and Unlikely Intersections
In this article, we combine complex-analytic and arithmetic tools to study the preperiodic points of one-dimensional complex dynamical systems. We show that for any fixed a, b ∈ C, and any integer d ≥ 2, the set of c ∈ C for which both a and b are preperiodic for z + c is infinite if and only if a = b. This provides an affirmative answer to a question of Zannier, which itself arose from questio...
متن کاملUnlikely Intersections in Arithmetic Dynamics
Combining ideas of Ihara-Serre-Tate, Lang [5] proved the following natural result. If a (complex, irreducible) plane curve C ⊂ A contains infinitely many points with both coordinates roots of unity, then C is the zero locus of an equation of the form xy = ζ, where a, b ∈ Z and ζ is a root of unity. In other words, if F ∈ C[x, y] is an irreducible polynomial for which there exist infinitely many...
متن کاملExplicit isogeny descent on elliptic curves
In this note, we consider an `-isogeny descent on a pair of elliptic curves over Q. We assume that ` > 3 is a prime. The main result expresses the relevant Selmer groups as kernels of simple explicit maps between finitedimensional F`-vector spaces defined in terms of the splitting fields of the kernels of the two isogenies. We give examples of proving the `-part of the Birch and Swinnerton-Dyer...
متن کاملTwisted Jacobi Intersections Curves
In this paper, the twisted Jacobi intersections which contains Jacobi intersections as a special case is introduced. We show that every elliptic curve over the prime field with three points of order 2 is isomorphic to a twisted Jacobi intersections curve. Some fast explicit formulae for twisted Jacobi intersections curves in projective coordinates are presented. These explicit formulae for addi...
متن کاملUnlikely, Likely and Impossible Intersections without Algebraic Groups
We formulate function field analogues for the PinkZilber Conjecture and for the Bounded Height Conjecture. The “special” varieties in our formulation are varieties defined over the constant field. We prove our function field Pink-Zilber Conjecture for all subvarieties, and we prove our function field Bounded Height Conjecture for a certain class of curves. We explain that for our problems the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2021
ISSN: ['1435-9855', '1435-9863']
DOI: https://doi.org/10.4171/jems/1057